Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Genet ; 69(2-3): 115-125, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37052630

RESUMO

The cAMP-dependent protein kinase (PKA) pathway in Schizosaccharomyces pombe plays an important role in microtubule organization and chromosome segregation. Typically, loss of functional Pka1 induces sensitivity to the microtubule-destabilizing drug thiabendazole (TBZ) and chromosome mis-segregation. To determine the mechanism via which Pka1 is involved in these events, we explored the relevance of transcription factors by creating a double-deletion strain of pka1 and 102 individual genes encoding transcription factors. We found that rst2∆, tfs1∆, mca1∆, and moc3∆ suppressed the TBZ-sensitive phenotype of the pka1∆ strain, among which tfs1∆ was the strongest suppressor. All single mutants (rst2∆, tfs1∆, mca1∆, and moc3∆) showed a TBZ-tolerant phenotype. Tfs1 has two transcriptional domains (TFIIS and Zn finger domains), both of which contributed to the suppression of the pka1∆-induced TBZ-sensitive phenotype. pka1∆-induced chromosome mis-segregation was rescued by tfs1∆ in the presence of TBZ. tfs1 overexpression induced the TBZ-sensitive phenotype and a high frequency of chromosome mis-segregation, suggesting that the amount of Tfs1 must be strictly controlled. However, Tfs1-expression levels did not differ between the wild-type and pka1∆ strains, and the Tfs1-GFP protein was localized to the nucleus and cytoplasm in both strains, which excludes the direct regulation of expression and localization of Tfs1 by Pka1. Growth inhibition by TBZ in pka1∆ strains was notably rescued by double deletion of rst2 and tfs1 rather than single deletion of rst2 or tfs1, indicating that Rst2 and Tfs1 contribute independently to counteract TBZ toxicity. Our findings highlight Tfs1 as a key transcription factor for proper chromosome segregation.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Segregação de Cromossomos/genética , Fatores de Alongamento de Peptídeos/genética
2.
Biosci Biotechnol Biochem ; 82(2): 247-257, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29316864

RESUMO

In Schizosaccharomyces pombe, the transcription factor Rst2 regulates ste11 in meiosis and fbp1 in glucogenesis downstream of the cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) pathway. Here, we demonstrate that Rst2 regulates additional cellular events. Overexpressed Rst2 elevated the frequency of oval, bent, branched, septated, and multi-septated cells. Cells showed normal nuclear divisions but exhibited abnormal nuclear organization at low frequency. In oval cells, microtubules were curved but they were rescued by the deletion of mal3. Since growth defect was not rescued by mal3 deletion, we argue that it is regulated independently. Loss of functional Pka1 exaggerated growth defect upon Rst2 overexpression because its downregulation by Pka1 was lost. Overexpression of Rst2 also caused sensitivity to KCl and CaCl2. These findings suggest that, in addition to meiosis and glucogenesis, Rst2 is involved in cellular events such as regulation of cell growth, cell morphology, mitosis progression, microtubules structure, nuclear structure, and stress response.


Assuntos
Microtúbulos/metabolismo , Mitose/genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/citologia , Schizosaccharomyces/genética , Fatores de Transcrição/genética , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Citocinese/efeitos dos fármacos , Citocinese/genética , Expressão Gênica , Meiose/efeitos dos fármacos , Meiose/genética , Microtúbulos/efeitos dos fármacos , Mitose/efeitos dos fármacos , Fenótipo , Sais/farmacologia , Schizosaccharomyces/efeitos dos fármacos , Proteínas de Schizosaccharomyces pombe/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...